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Eigensystem analysis techniques are applied to finite difference
formulations of Euler and Navier—Stokes equations in two dimensions.
Spectrums of the resulting implicit difference operators are computed.
The convergence and stability properties of the iterative methods are
studied by taking inte account, the effect of grid geometry, time-step,
numerical dissipation, viscosity, boundary conditions, and the physics
of the underlying flow. The largest eigenvalues are computed by using
the Frechet derivative of the operators and Arnoldi's method. The
accuracy of Arnoldi’s method is tested by comparing the dominant
eigenvalues with the rate of convergence of the iterative method. Based
on the pattern of eigenvalue distributions for various flow configura-
tions, the feasability of applying existing convergence-acceleration
techniques like eigenvalue annihilation and relaxation are discussed.
Finally a shifting of the implicit operators in question is devised. The
idea of shifting is based on the power method of linear algebra and is
very simple to implement. The procedure of shifting the spectrum is
applied to ARC2D, a flow code developed and being used at NASA
Ames Research Center. When compared to gigenvalue annihilation, the
shifting method clearly establishes its superiority. For the ARC2D code,
an efficiency of 20 to 33 % has been achieved by this method. © 1993
Academic Press, ine.

L INTRODUCTION

As the 21st century approaches, the need for faster and
more efficient aircraft becomes more pronounced. In
designing an aircraft, the aeronautical engineer must do a
lot of experimentation involving a wind tunnel. Such testing
is expensive and therefore cannot accomodate the effects of
“infinitely many” parameters associated with aircraft flight.
The computational fluid dynamicist, on the other hand, is

able to perform numerical simulations for many of the
situations likely to occur in flight. In addition, numerical
experimentation is less costly as compared to wind tunnel
testing. This makes CFD a powerful tool for studying
aircraft flight. This tool cannot completely replace conven-
tional testing but is extremely desirable because of its
versatility.

There are many limitations in present day computers,
however, Rounding and truncation on “finite-precision”
computers are known to swamp a computation. Speed and
storage of a computer arc other factors which hinder our
calculations in general. This paper addresses a technique for
speeding-up certain calculations by shifting the spectrum of
finite-difference operators associated with Navier-Stokes
solvers.

ARC2D {5, 10] is a computer code that solves Navier—
Stokes equations for arbitrary two-dimensional geometries.
This code was developed at NASA Ames Research Center
and is currently in use there. When Navier-Stokes
equations in two dimensions are discretized, the resulting
matrix system can be solved iteratively. The iterative
process generates the solution, but takes unusually long to
converge. The problem of reducing the CPU time in such a
computation, by accelerating the iterative process, is attrac-
ting many scientists. This paper presents an acceleration-
convergence technique for general iterative schemes,
particularly ARC2D. The method given here does not
depend on a particular Navier—Stokes solver, nor on the
computer architecture.

There are various ways of improving the rate of
convergence of an iterative method. Some of them are
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etgenvalue annihilation [147], multigrid [20], and artificial
viscosity models [13]. The method described here depends
on improving the rate of convergence of a method by
shifting the dominant eigenvalues of the iterative matrix.
This matrix can be modified without altering the steady
state solution, by forcing the new eigenvalues to be smaller
in magnitude. The process speeds up convergence.

Arnoldi’s method is used to compute a few large cigen-
values of the time-dependent matrices appearing in the
iterative formulation of Navier-Stokes equations. The
patterns of eigenvaiues for different flow configurations are
stadied. Based on these patterns, a shifting of the spectrums
of implicit operators (matrices) is devised. The amount of
shift for a specific case depends on the ends of the spectrum,
which is available from Arnoldi’s method. The shifted
ARC2D code shows that convergence can be accelerated by
a proper choice of the shift factor.

The results obtained are compared with the methoed of
explicit eigenvalue annihilation. The shifting strategy is
found to be superior, as shown in Sections IV and V. in
Section V itis shown that a relaxation scheme will not work
for ARC2D, in general. Section VI shows the improvement
obtained due to the shifting method. A savings of between
20 and 33 % is clearly visible from the tables and graphs.

II. NAVIER-STOKES EQUATIONS

In two dimensions, the equations to be solved are

éE, OF,

—Re ! =242
(55 )
where the symbols have their usual meaning [3, 5]. Equa-

tions {1) can be transformed from Cartesian coordinates to
general curvilinear coordinates by using the transformation,

6Q aE oF
6x 6v

(1)

=1 {=x(x, 3, 1), n=n(x, y 1)

It is assumed that this transformation has sufficient smooth-
ness properties, so that the corresponding Jacobian J is
non-singular. With this understanding, the transformed

equations are
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with U=¢, +{,u+&,v and V=y,+n.u+n,v as the
contravariant velocities.

The viscous flux terms are £=J~ WEE, + £, F.)and F=
J'n . E, + n,F,). The stress terms such as 1, are also
transformed in terms of the ¢ and » derivatives and can be
found in [3, 4]. To be able to include viscous effects which
are concentrated near rigid boundaries and in wake regions,
a thin-layer approximation is applied to Eqs. (2). The thin
layer approximation is similar in philosophy but not the
same as the boundary layer theory. All viscous derivatives in
the £ direction are neglected, while terms in the 5 direction
are retained. The inviscid terms are included in their
entirety. Equations (2) thus become

. 3
2w & (3)
where the form of § can be found in [3, 5]. The Beam—
Warming scheme [11] is next apphcd to Eq. (3). This
results in
Q“n+lﬁQ‘n+h(EE+l+Fg+l_Refl§:+1)=0, (4)

where k= At ) )

Equation (4) must now be solved for Q" ', once a 0" 1s
givr:n. The flux vectors £, F, and & are nonlinear functions
of ¢" and therefore Eq. (4) is nonlinear in Q"j ', These non-
linear terms are linearized in time about Q" by using a
Taylor series. Thus,

n+l

Emil=Er 4 AQ" — §7)+ O(?)
=E"+ 4" 40" + O(h?)
Frel=fFr 4 B 40" + O(h?)
Re~! §"*1=Re '[§"+J'M" 40"] + O(h?),

where A =0£/00, B=0Fj0Q, M=038/6Q are the flux
Jacobians, and 4Q" = O(h). The explicit forms of the flux
Jacobians can be found in [3,4]. Equation (4) now
becomes

Re~'J 'ho,M"] 40"
—Re!2,58"]

[I+h8,A"+hd,B"—

= —h{d.E"+8,F" {4.1)

which in future reference will be called the unfactored form
of the block algorithm.

Since the integration of the full 2D operator is too expen-
sive, an approximate factorization of the following form is
used:

[I+hé, A"+ ho, B —
=[I+hd A" I+hd,B"—
—h?3,A"0,B"—h*Re™"' 8, A" 0,M" 40"

Re ' hd,M"] 40"
Re 'ho,M"] AQ"
(5)
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The cross term is second-order accurate since 40" is O(h).
It can therefore be neglected without degrading the time
accuracy of any second-order scheme that may be chosen.
The resulting factored form of Eq. (5) is,

[I+ho,A"}[1+ho,B"—Re~' ha, M"] 40"

= —h[0,E"+3,F"—Re '3,5"] (6)
This gives two implicit operators, each of which is block
tridiagonal. The solution procedure consists of two one-
dimensional sweeps: one in the ¢ direction and one in the #
direction.

As a further simplification, Eq. (6) can be broken into its
diagonal version by noting that the flux Jacobians 4 and B
have real eigenvalues and a complete set of eigenvectors, as
given in the appendix of [5]. Thus they can be diagonalized
as

A, =T7'AT,, A,=T7'BT,

vyhere T, and T, are the matrices of eigenvectors of A and
B, respectively. With this choice, Eq. (6) becomes [T, T, +
RO AT A, Ty DT, Ty +h6,(T, 4, T 1] AQ" = explicit
RHS of (6)=R" or,

TdI+h8,A)NI+h6,4)T7 A0"=R, ()
where N=T;'T,.

Computational experiments by Pulliam and Chausse
[12] show that the convergence and stability limits of the
diagonal algorithm are identical to that of the unmodified
algorithm. Furthermore, the diagonal algorithm reduces the
block tridiagonal inversions to 4 x 4 matrix multiples and
scalar tridiagonal inversions. .

In order to improve the stability bounds of the algorithm,
numerical dissipation is added. The model to be employed
is again from [137.

III. ITERATIVE SOLUTION PROCESS

Our objective here is to write the factored form of
ARC2D algorithm in a simple iterative version. This will
help us in identifying the iteration matrix and obtaining a
subset of its spectrum. Finally, this spectrum will be
analyzed and the amount of shift (necessary for accelerating
the convergence) will be calculated. Equation (6) can be
written in an operator form as

L:G, 40" =R",

where L, and G, are the block ¢ and » operators. Dropping
the “hats,” and inverting the blocks, leads to AQ" =

GW_'LEIR", or Q"*.'1=Q"+G;1L~;1R", with L.(Q")=
Q"+ G, 'L;'R". This process can be condensed into an
abstract functional equation,

Q"= L(Q"). (8)

Clearly, L is a nonlinear transformation in a certain Banach
space setting. This L has the effect of flux Jacobians, coor-
dinate geometries, viscosities, numerical dissipations, initial
and boundary conditions built into it. Its exact analytic
form is not available. Inspite of this difficulty, a study of the
convergence properties of Eq. (8) is performed by looking
at the eigensystem associated with it. This study will be
useful in accelerating the convergence of this equation.

When the ARC2D is put in the iterative form 9" *'=
L(Q"), an application of L on " means that the following
steps have been performed:

(a)
(b)

{c) setting up boundary conditions.

obtaining a mesh in the £, n space.
setting up imtial conditions/data for the flow.

(d) computing the right hand side R” which has viscous
effects and explicit dissipation terms.

(e) filling the block tridiagonal operators L, and G,,
and adding to them implicit dissipation if required.

{f} finally, inverting the factored & and » blocks to
extract the solution vector Q"+,

The procedure (a) to (f) outlined above is one iteration of
the ARC2D code,

As explained in [16], the Jacobian A = 4L/dQ*, where
(O* is a reference solution of (8), controls the convergence of
Eq. (8). With jmax grid points in the £ direction, kmax grid
points in the n direction, and four unknowns at each grid
point, the dimension of matrix A is (4 - jmax - kmax). This is
a large number even when jmax and kmax are small. This
study analyzes the spectrum of A associated with flow past
a NACAOQ012 airfoil, superimposed on a non-periodic
127 x 32 C-mesh. In this case the Jacobian matrix A has
{4 x 127 x 32)* = (16,256)* elements. This is a figure that is
larger than 2.6 x 10%. The computation and storage of this
huge matrix is impossible on the CRAY-XMP48 supercom-
puter. In order to obtain some insight into the spectrum of
A, Arnoldi's method [1, 7] must be used. Its algorithm to
compute the dominant eigenvalues of A is described below:

For an arbitrary vector q,, define,

q,

qo=——.
T

The algorithm then consists of the following steps:
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Fork=1tom,do
k
qk+l=fi€lkk z Cjkﬁj
i=1

Co = <€lj3 AQ.Q
where {x, y» = Inner product of the vectors x and ¥

a qk+1
q = -
e

next k.

The m eigenvalues of C=c, are the approximations to
“some” m eigenvalues of A. Products like Av which are
needed for arbitrary v can be achieved by using the idea of
the Frechet derivative of L as

_dL  L(@*+ev)— L(Q* —ev)
o+’ " 2%

Av + O(&%).

It should, however, be noted that even if 10% of the 16,256
eigenvalues are extracted, the upper Hessenberg matrix C of
Arnoldi’s method should be 163 x 163. This amounts to
demanding a lot in terms of computer CPU time, In
extracting 163 eigenvalues of the ARC2D operator, 60 sec of
CPU on the CRAY-XMP48 would be used. This includes
2 x 163 = 326 iterations of the code and the time for EIGRF
[2] to compute the eigensystem.

Keeping this in mind, only 50 eigenvalues of the ARC2D
operator were approximated by Arnoldi’s method. This was
done iteratively by running Arnoldi’s process twice, for a
variety of problems. Occasionally, 100 eigenvalues, com-
prising 6% of the entire spectrum were also computed. In
forming the Frechet derivative for the one-dimensional case

[16], _
i dL L(Q* +ev) - L(Q* —ev)
V= v =

+ O(e?),
0™ 2 (%)

the & was chosen from the requirement, &=0.001
1@*(/Il]]). In the present case of ARC2D, this criterion had
to be changed. Here & was taken to be of the same order of
magnitude as the residual at that iteration. Choosing a
bigger epsilon perturbed the solution to a larger degree than
was desired and resulted in an unstabie process. Similarly,
when a smaller epsilon (g < residual) was taken, then the
{O* + sv) was a very slight perturbation of 9*, and the code
did not differentiate (Q* +ev) from (Q* —ev). In that
case, cancellation occured while caleulating { L(Q* +ev) —
L(Q*—¢r)} in the Frechet derivative. The choice of ¢ was
critical in obtaining the spectrum of A, as explained in the
next paragraph.

Assuming a rounding error of é in one application of the
operator L, it is easy to see that a maximum rounding error

of 28/2¢ is possible in the product Av. Thus the Frechet
derivative has a total error (roundoff and truncation) of
d/e 4+ O(&?). Decreasing epsilon with the hope of obtaining
an accurate Frechet derivative will actually destroy it with
roundoff errors propagating through the d/e term. The com-
putation of an optimal perturbation, &, is theoretically
possible. It will, however, require knowiedge of the spec-
trum of some large sparse matrix—a complex problem in
itself, not being addressed here. The dependence of Av (and
hence the eigenvalues of the iterative matrix) on the pertur-
bation ¢ is therefore quite natural, as will be seen in
Section IV,

Moreover, in the viscous calculations, the solution
changes so rapidly near the body surface, that a slight
change in epsilon excites the solution and hence the Frechet
derivative. Thus 2 will be less accurate for a viscous case,
making it difficult to accelerate. In future studies, as a test,
epsilon based on the pointwise residual will be used. For the
viscous case, for example, epsilon can be taken to be of the
same order as the minimum pointwise residual, This
question will not be discussed at the moment.

When the solution vector (" at the nth iteration was
taken as the starting vector v for Arnoldi’s method, the per-
turbation (Q* + &v) turned out to be a perfectly balanced
ong. Thus the small components of Q* were perturbed
slightly, whereas the larger ones were perturbed a lot. With
this choice, the convergence of Arnoldi’s method was
remarkable and suggested that 0" as a starting vector
was indeed very appropriate. This choice did not require
the construction, £=0.001 = (|Q*|/|lv]]) as proposed by
Eriksson and Rizzi [8].

1¥. ACCURACY OF ARNOLDI'S METHOD FOR ARC2D

In the one-dimensional nozzle problem {167, estab-
lishing the accuracy of Arnoldi’s method was easy. This was
due to the fact that the complete numerical Jacobian
A =dL/dQ* and its spectrum were both available even for
the largest 300 x 300 case. Here, in the two-dimensional
problem, as already said, the matrices encountered are
larger than 16,000 x 16,000. So a new approach is adopted.
This section compares the largest cigenvalue of the ARC2D

‘operator, obtained by using Arnoldi’s process with the rate

of convergence of the code. These quantities agree to within
1073 in most cases, as will be discussed below.

The airfoil under consideration is NACAQQ12, with a
non-periodic 127 x 32 C-mesh. Other default values of the
constants of flow are

TINF = temperature at infinity = 460

DIS2X = DIS2Y = second-order dissipations = 1.0
DiS4X = DIS4Y = fourth-order dissipations = 0.64
ALPHA = angle of attack =0.
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Subsonic Flow

Assuming inviscid flow and a Mach number of 0.4, the
code was run to a steady state, and the solution Q* stored
at 600 iterations. For the Frechet derivative, an epsilon of
107 (which is actually much bigger than the residual at 600
iterations) was taken. On extracting 100 eigenvalues with
Arnoldi’s method, it was found that

Amay = 0.9326 £+ 10.21266
[ A max| = 0.95656
which is exactly the same as the rate of convergence of the

code at 600 iterations. The rate of convergence, r, was
calculated by the formula [18]

residual at N iterations |+
[

N—M
residual at M iterations

Some authors prefer to call it the amplification factor. They
define —log(r) as the rate of convergence. In this study, the
rate defined from Eq. (9) will be adopted throughout,
because of its similarity with the largest eigenvalue.

For this case, 50 eigenvalues and the corresponding
eigenvectors were also extracted. Then using the “dommi-
nant” eigenvector as the starting vector for Arnoldi's
method, the iterated spectrum was obtained. A,,,, was found
to be 0.93278 +i0.21242 and |2, =0.95675, which is
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FIG. 1. ARC2D, 127 x 32 C-mesh, 50/16,256 eigenvalues, Mach 0.4,
600 iterations: [ =first iteration of Arnoldi, with epsiton = 1.0£-03;
@ =second iteration.

within 0.0002 of the previous result. These eigenvalues
appear in a circular distribution in the right half plane, but
within the unit circle, as shown in Fig. 1.

A similar test was done with viscous flow and a Reynold’s
number of 10,000. The code was only run to 200 iterations.
Laminar conditions were assumed. With a residual of
0.779x 10~ ¢ and a rate of convergence ol 0.986178, 50
eigenvalues were extracted using ¢= 107, Here |A ..l =
10.99127 + i0.0| = rate + 0.005. Since an epsilon of 10~° was
also possible in this case, it was used and found that
|4 el = 1097803 4 0.01817| = 0.9782. Clearly, in this case,
|4 may| = rate of convergence —0.008.

Using the same conditions of viscous flow at Mach 0.4, a
subset of the spectrum at 630 iterations was also computed,
to give, Ay = 09914 + i0.0, which is plotted in Fig. 2. This
is a discrepancy of only 0.0015.

Transonic Flow

The results for subsonic flow presented the authors with
enough motivation to compute spectrums in the transonic
range. The Mach number was set at 0.8, and for inviscid
flow the code was run to 200 iterations. Fifty eigenvalues
were extracted with epsilon = 1077 to give |i,.l =
[0.97058 + i0.0883] =0.97463536. The rate of convergence
at 200 iterations was 0.9755 which is within 0.0009 of i_,,,.
At 400 iterations the rate of convergence was (.974534,
whereas

[Amax| = 10.970548 + i0.088547| = 0.9745789.

]
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FIG. 2. ARC2D, 127 x 32 viscous C-mesh, Re= 10,000, Mach 0.4,
620 iterations, 100/16,256 eigenvalues: [l = first iteration of Arnoldi.
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FIG. 3. ARC2D, 127 x 32 inviscid C-mesh, Mach 0.8, 600 iterations,
50/16,256 cigenvalues: [ = first iteration of Arnoldi; ¢ =second iteration
of Arnoldi.

Here the difference between |A,..| and the rate of con-
vergence was less than 0.00005, Similarly, at 600 iterations
of the code, the rate of convergence was 0.974866, and as
shown in Fig. 3, |4,..0=10.9709 +:0.08868| = (.97495273,
a difference of about 0.0008.

With the addition of viscous terms at Mach 0.8 and

1.0
0.8
<>
06 F ¢
® 0, @
0¥ 0°q
04 o¢ u] o
& o|:|
w
; - [m) [u] L]
0.2 L3 a]
= De
&, - C o
] o ° o N De
S 0.0 '%‘u“ o, L b
= ® ¥l a oe
< _gz2 | ® o
P 2N
g S e
L De u sC
~0.4 fa) ':‘@D
B & 0% O
-0.6 o
L3
-0.8

~1.0 1 I 1 1 ! 1 I 1 L
-10 -08 -0.6 -04 -~02 0.0 0.2 04 0.6 0.8 1.0
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FIG. 4. ARC2D 127 x 32 viscous C-mesh, Re = 10,000, Mach 0.8, diss
4 =0, 200 iterations: ¢ =second Arnoldi iteration.

Reynold’s number 10,000, the calculations were carried out
at 200 iterations only. The rate of convergence, as computed
from Eq. (9) was 09876, whereas |[i,.]|=0.99108 +
{0.0497950( = 0.99233 as shown in Fig. 4. Here, |4
rate of convergence +0.004.

maxl -

The Effect of Other Algorithm Parameters

In order to see the effect of fourth-order smoothing
DIS4X and DIS4Y, the spectrum for various cases was
obtained. These smoothing parameters were varied from 0.0
up to 2.56 for the viscous transonic case. The plots are
shown in Fig. 4 through 7.

With small values of these parameters, the eigenvalues are
large, some with positive real parts and others with
negative; 4., — A, is as large as 1.9 in some cases. As the
smoothing becomes larger than 1.0, the smaller circle of
eigenvalues in the left half plane begins to disappear. With
a smoothing factor of 2.56, a very compact picture (Fig. 7)
is obtained with 4, — A, = L.5.

The variation of smoothing terms was studied in the
factored, block tridiagonal version of ARC2D also. The
results were similar to the pentadiagonal version, the only
difference being that 2, was generally smaller in the block
tridiagonal case. With the dissipation taken as DIS4X =
DIS4Y =0.0 and 0.16, there were some eigenvalues larger
than 1.0, as expected. Then as the smoothing factors
increased from 1.0 to 2.0, the smaller circle of eigenvalues in
the left half plane began to disappear as before. This is
pictured in the plots. See Fig. § through 10.

Among a variety of other options, the code ARC2D has
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FIG. 5. ARC2D 127 x 32 visceus C-mesh, Re = 10,000, Mach 0.8, diss
4 =0,64, 200 iterations: ¢ = second Arnoldi iteration.
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FIG. 6. ARC2D 127 x 32 viscous C-mesh, Re = 10,000, Mach 0.8, diss
4 =128, 210 iterations: ¢ second Arnoldi iteration,

a number of strategies for choosing a time step procedure.
The variable jacdt is a switch to turn on constant or scaled
step sizes. For instance, jacdt =0 means that a constant step
size is to be taken; jucdt =1 means that the time step is
scaled according to the metric Jacobian. This choice allows
for larger time steps, when the Jacobian is large, especially
near the body surface:
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FIG. 7. ARC2D 127 x 32 viscous C-mesh, Re = 10,000, Mach 0.8, diss
4 =2.56, 210 iterations: ¢ = second Arnoldi iteration.
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FIG. 8. Block ARCZD 127x32 viscous C-mesh, Re= 10,000,
Mach 0.8, diss 4 = 0.0, 200 iterations: ¢ =second Arnoldi iteration,

jacdt =2, selects a time step based on the minimum
cigenvalue.

Jacdr =13, selects a time step based on constant CFL
number at each point.

The default option of the code is jacdr = 1. A representative
case of inviscid flow at Mach 0.8 was studied with different
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FIG. 9. Block ARC2D 127x32 viscous C-mesh, Re= 10,000,
Mach 0.8, diss 4= 1.0, 210 iterations: ¢ = second Arnoidi iteration.



8 SALEEM., PULLIAM, AND CHEER

0.8
Q.6
0.4 bk . B
OB.@ AN
w o a o ey
% oozt & .
© o o Qa o e
e & °
o 0.0 | aon + & o
g = @
ap
@ _ i % w] o a qo
E 02 % »
— g o o j [l
‘e f
0.4 B3 g &
-0.6
_OB —
B J S — 1 1 1 1 1 1 1

-10 -0.8 -06 -04 -02 00 02 04 06 08 1.0
real axis

FIG. 10. Block ARC2ZD 127x32 viscons C-mesh, Re=10,000,
Mach 0.8, diss 4 = 2.0, 200 iterations: ¢ = second Arnoldi iteration.

values of jacdr. First, the code was run to 500 iterations,
where the residual fell below 10~%, This converged solution
was then saved, and the spectrum of the implicit operator
was obtained. The largest eigenvalue was seen to bc
0.9705 +70.08. This eigenvalue will be denoted by 4, to
serve as a reference. The optimal value of dr that the code
had picked was 0.816.

Then at 500 iterations, a constant step size of dr=0.08
(with jaedr = 0) was introduced into the code and the spec-
trum was again computed. The largest eigenvalue for this
approach was found to be 0.9905+:0.009, which is
considerably larger than the reference eigenvalue A4, defined
above. This test suggested that a time step of 0.08, which is
10 times smaller than 0.816, slowed down the convergence.
This was also observed by looking at the increase in
residuals with this time step. The effect of increasing df to a
fixed value of 1.0 was tested similarly. The largest eigenvalue
came out to be 0.923 +i0.636 which has an absolute value
of 1.121. This large value of the time step makes the code
unstable. This occurs despite the fully implicit construction
of the ARC2D code. It certainly does not reflect as a
shortcoming of the code, but rather suggests the difficulty in
achieving stability for a nonlinear process with shock waves,
as described by the Navier-Stokes equations. It also agrees
with the well-known fact that implicit methods are condi-
tionally stable for most nonlinear problems. A aimplc
example is that of backward Euler method (Wthh 1s
implicit) applied to the nonlinear problem y’ = —Ay

When the variable time step was chosen according to
the constant CFL number, the dominant eigenvalue was

found to be 0.98508 + i0.0744, which is larger than A in
absolute value. Similarly, with dr based on the minimum
eigenvalue, the spectrum of the implicit operator showed
0.998 + i0.0407 as the dominant eigenvalue.

These simple experiments suggested that the time step
based on the metric Jacobians is the optimal strategy for
choosing dt in the ARC2D code. Very small or very large
time steps do not improve the rate of convergence.

As a final experiment, a time step sequencing strategy was
tried by fixing the time step as follows:

For 1-100 iterations, dr = 0.001
For 101-200 iterations, df = 0.005
For 201-300 iterations, df =0.02
For 301-600 iterations, dt = 0.05.

The largest eigenvalue at 600 iterations was 0.9976 which is
bigger than A. Small steps like these did not improve the
rate of convergence of the code as compared with the case
Jacdt=1.

Summary of These Results

From Figs. 1 to 10 it is obvious that the inviscid ARC2D
operator has an approximately circular distribution of
eigenvalues. This circle, in most cases, is centered at x =0.5
and has a radius of 0.5. This definite pattern gave rise to the
question of translating the above-mentioned cirele, so that
its new center be at the origin. This means that the new
largest eigenvalue would be given by i=0.5. With this
translation or shift, the rate of convergence can theoretically
be improved from around r=10 to r=0.5. This idea is
addressed in the next section.

The spectrum of the viscous ARC2D operator with
Re = 10,000 has one noticeable feature as compared to the
inviscid case. It has two distinct circular distributions of
eigenvalues—one with positive real parts and the other with
negative real parts. Such a distribution is hard to deal with.
A translation which is capable of decreasing the largest
eigenvalue from 1.0 to 0.5 in the inviscid case will not be as
effective here. The reason is that the largest and smallest
eigenvalues of the viscous transonic case are, respectively,
given by, A, =0.99108 £i0.049795 and A, = —0.834 &
10,0408, which leaves little room for translation.

V. ACCELERATION METHODS

This section deals with some existing techniques for the
acceleration of convergence: It gives a briel picture of eigen-
value annihilation applied to the ARC2D. The resulting
improvement in the rate of convergence by this method is
obtained, but the underlying difficulty of the exact computa-
tion of a few large eigenvalues is well known. The classical
relaxation technique is also discussed. This method works
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very well for one-dimensional problems, but not in the
ARC2D. A simple proof to this effect is also given. Finally,
a method based on skifting the spectrum of the mplicit
operators is derived. This method, inspite of its simple
implementation, has shown interesting results with
considerable savings in computer time. These results are
presented here.

Whenever the largest few eigenvalues are discretely
distributed, eigenvalue annihilation techniques based on
Aitken's or Shanks’ transformation {14] will work eflec-
tively. Explicit eigenvalue annihilation requires that a linear
combination of two recent solutions be constructed as [14],

n+1 H
0-2" "
—i
where £ =A_,,. This improved solution  clearly converges
according to the second largest eigenvalue and not as 4 ,,,.
This method has been applied to a one-dimensional
problem [16] to produce impressive results.

The difficulty appears in two dimensions. For the test case
of ARC2D, with a 127 x 32 C-grid, the solution Q is a
column vector of dimension 16,256. In order to annihilate
the largest p eigenvalues, the previous (p+ 2} solutions
must be saved. Manipulating them means an extra storage
of {p+2) * 16,256, which can easily become a problem on
small computers. Moreover, the question arises: How many
of these 16,256 eigenvalues need 1o ne annihilated to improve
the convergence of the code? The answer is: approximately
800 for the viscous transonic case, in improving the rate of
convergence from 0.99 to 0.96. Theoretically, this is possible
by using an 800-term eigenvalue annihilation algorithm. In
practice, this suffers from serious storage considerations on
machines like the CRAY XMP-48 supercomputer at NASA
Ames Research Center. If computer memory were not a
problem, a good estimate of the largest 800 eigenvalues is
still out of question, even by using Arnoldi’s method. This is
because Arnoldi’s method does not necessarily compute the
“largest” eigenvalues in a certain spectrum, as explained in
Ref. [16,177]. Thus, in general, the use ol an eigenvalue
annihilation procedure in accelerating the ARC2D is not
very effective.

Equation (10} can be rewritten as

1 + n
Q=750 20
=" +(l-w) Q"

where w=1/(1 — A). This is the classical relaxation proce-
dure which is equivalent to explicit eigenvalue annihilation
defined by Eq. (10). The parameter w which lies between 0
and 1 can be varied to achieve optimal results. Relaxation
works very well in one-dimensional problems. In the two-

dimensional case where the largest eigenvalues are clustered
together, it does not perform well. In fact, the following
shows why a classical relaxation scheme will not work for
the ARC2D:
Consider the standard iteration scheme,
X, 1 =dAx,+ f,

where A is a matrix and fis a vector. Suppose the converged
solution x* satisfies

x*=Ax*+ f
The error e, = x, — x* satisfies

Cnt1 =A€,,.

A new iteration can be formed with relaxation parameter o,
such that,

'i:n+l =wxn+(1 —w)(Axn +f)
=[(l-w)dtol]x,+(l —w)f
New errors obey the equation
€ =[1-w)d+wl]e,
If ' denotes the eigenvalues of the new iteration and A
denotes the eigenvalues corresponding to the original
iteration, then they are related by

A=(1—a)i+w.

The rate of convergence originally governed by || is now
governed by |4'|, which will be a minimum if

d ’
—1x1=0.
But
=L (10 17+ 0 + 01— ©) -2 Re(A))
dw dw

(where Re means “real part of ")
=201 =) |4+ 2w+ {1 —2w) -2 Re(4)
w[24+2]4? —4 Re(A}]+ 2 Re(A}— 2 [4]?]

This vanishes if

41> = Re(d)
o= .
1+ |27 —2 Re(A)
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Consequently, there will be no improvement if 2 =1, which
is almost true in many cases of the ARC2D and where there
are a lot of eigenvalues with magnitudes close to 1.0.

In fact, explicit eigenvalue annihilation based on 4., was
found te be useful for inviscid cases only. For inviscid, sub-
sonic flow with a free stream velocity of Mach 04, i, =
0.9265 +i0.1981 was annihilated as a complex conjugate
pair. This improved the rate of convergence from 0.359 to
0.952, Based on 300 iterations, this is an improvement of
one order of magnitude which is about 50 iterations, or a
savings of less than 17 %.

A similar improvement was obtained for inviscid flow at
Mach 0.8. When the largest cigenvaiue, given by A, =
0.9705 + ¢0.088 was annihilated at time step 250, the rate of
convergence improved from 0.985 to 0.984, which is again a
saving of about 50 iterations.

For the viscous case at Mach 0.4, the same explicit eigen-
value anmihilation process was applicable to some extent.
Based on a run of 300 iterations, a savings of 50 iterations
was, always possible. The transonic-viscous problem that
motivated this entire study could not be accelerated effec-
tively by the annihilation or relaxation methods. Meager
achievements in annihilating the largest eigenvalue led to a
savings of 10-15 iterations out of a total of 250. This is
definitely not enough.

The failure in using these existing methods led to another
class of acceleration methods previously not employed in
the context of nonlinear fluid flow problems. This new class
of methods, as described in the next sections, is based on
shifting the spectrum of the ARC2D operator.

VI SHIFTING THE SPECTRUM OF THE
ARC2D OPERATOR

The unfactored block form of the ARC2D algorithm is
already given in Eq. (4.1}. To build a theory for the shif
process, an approximation is carried out by neglecting the
viscous terms. This results in

[[+hd,4"+ho,B"] AQ" = —h{8,E"+0,F"], (11)

where 4 and B are the flux Jacobians, Homogeneous
property of the fluxes can now be exploited (E£=A4Q,
F = BQ)to simplify Eq. (11). Thus,

(I+G") 4Q"= —G"Q",
where G"=h ¢, A"+ h ¢, B”. Inversion leads to
Qn+1 =Qn_(1+6)71 GQn
=[I—-(I+G)"'G1o~ (12)

This suggests that, in general, the shift procedure and
analysis for the ARC2D will be similar to the one-dimen-

sional case, discussed in [167]. The only change to be made
is because of the approximate factorization of the implicit
operator in Eq. (11). This factorization has already been
discussed. Thus if

[I+hd:A"+ho,B"] AQ" .

m[I+hd.A"][I+hd,B"] 40" (13)
a shift “s” can be mtroduced in each of the & and 5 blocks,
so that the factored implicit operator becomes

[{+si+hoA"J[I+sI+ho,B"]
Multiplying out, one obtains

I+ 2sI+5 T+ ho:A"+hé,B"
+shd, A" +5sh6,B"+h*8,0,B"
=(I+2s[+hd. A"+ h,B")
+sh(0:A"+0,B")+ s+ h* 3.0, B".

Thus a shift s in each factored block, produces a shift 25 in
the implicit operator. In addition, some unwanted terms, s°/
and sh(3, A"+ J, B") are also introduced. These terms are
small enough to be neglected. Moreover, the term A? 0.0,B"
can be dropped, too, because the time derivatives chosen
here are accurate up to the first order.

Therefore, to adopt a shifting procedure for the factored
form of ARC2D, a shift s/2 must be introduced in each
factor. The eflect of 5/2 in each factor will automaticaliy shift
the implicit operator by an amount s, where s is taken to be

§= - % ("J"max + ;tmin)' (14)
Consequently a shift of 5/2 in each factor of Eq. (13) will
reduce the largest eigenvaiue from A, tO .y, asin [16],
where
11— % (;Lmax + A.'m'm]

= . 15
Hena 1- % (Amax + ﬂ"min) + g ( )

where g is an eigenvalue of G.

TABLE 1
Iteration Residual Rate of convergence
W |out shift With shift W/out shift With shift
100 0193 x10% 0.695x107° 09771 0975
200 0.169x10°%  0677x1078 0.9568 0.9547
300 0.263x 107  0740x10°1° 0.9592 0.9558
400 0759 x 107" 0462x 10712 0.965 0.9505
500 0352x10-12 10" atiter. 473  0.9697 —
600 0.182x 1013 — 0.9708 —
625 (Vi — — —
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FIG. 11. ARC2D, 127 x 32 C-mesh, Mach 0.4, with and without shift,
{without shift residual = 1-0E — 14 at 625 iterations, ; shifted each
block by —0.2, ——-).

The shift 5/2 = — 1 (A ux + Amia) Was introduced into the
implicit factors of Eq. (13) and various flows were com-
puted. In the inviscid, subsonic case with a Mach number of
04, i, and A, were found to be 09132640212 and
—0.102, respectively. Using a shift of — § (Apay + Amin)
which is approximately —0.2 with the imaginary part
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FIG. 12. ARC2D 127 x 32 viscous C-mesh, RE: 10,000, Mach =04
(without shift, ; each factored block shilted by —0.1, ——-).

TABLE 11
[teration Residual Rate of convergence
Wout shift With shift W/out shift With shift
100 0313x107%  0214x 1077 0.981 0.9797
200 0779x 10¢  0284x10°¢ 0.986 0.9800
300 0.196x107¢ 0489 x 1077 0.9861 0.9826
400 0.538x10-7  0939x10~* 0.9875 0.9836
500 0.153x 1077 0323x10* 0.9875 0.9890
600 0474 x107%  0.200x 107 0.9881 0.9951
100 02101078 0.133x107° 09918 0.9943
800 0.148x 108 0.623x107° 0.9965 0.9943
900 01011072 0340x 10~* 0.9962 0.9939
1000 0.653x1077 0186 x10* 0.9957 0.9939

supressed, the code was found to converge faster, A com-
parison of shifted and wunshifted processes is shown in
Fig. 11. Based on the interation count, this is a savings of
about 150 iterations, or 25%. As already mentioned,
explicit eigenvalue annihilation produced a savings of less
than 17% for this flow. Table I gives a comparison of the
residuals and rates of convergence for both these methods.

For viscous flow at the same Mach number of 0.4 and a
Reynold’s number of 10,000, based on the chord length, the
ends of the spectrum were found to be A,,,, =0991 and
Amin = —0.584 +i0.04. With5/2 = — L (A pay + Amin) ® —0.1,
the performance of the unshifted ARC2D code was com-
pared with the shifted version. The results are plotted in

RESIDUAL

107§
10t T
‘11:
10 E
10'1' I 1 I I !
o 100 200 300 400 500 600
ITERATIONS

FI1G. 13. ARC2D, 127x32 inviscid C-mesh, Mach =038, with and
without shifting the spectrum (unshifted version, rate of convergence =
0.975, , with shift = —0.2, rate of convergence = 0.9617, =——).
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Fig. 12. A savings of about 200 iterations, or 20%, can be
observed on a run of 1000 iterations. The residuals and rates
of convergence are given in Table I1.

In the transonic case (Mach 0.8), inviscid flow calcula-
tions were formed by using the ARC2D code and its shifted
version. The shift parameter was chosen from the equation

1
%: — (—0.9707 +0.088—007) = ~0.2.

The results shown in Fig. 13 clearly reflect a savings of
about 200 iterations, or 33 %.

Finally, the shift procedure was applied to a difficult case
of transonic flow (Mach 0.85), with an extremely high
Reynold’s number of cight miilion. With a 2-degree angle of
attack, this was a separated flow with a lot of turbulence.
ARC2D uses the Baldwin—-Lomax turbulence model [19].
The unshifted version of ARC2D failed to convergence for
this case. The residual hung up around 107 at 200 itera-
tions and stayed the same thereafter. The approximate ends
of the spectrum for this flow had been computed at 250
iterations by using Arnoldi’s method. They were

e = 0.9944 + 10,0419
Ao = —04.

This suggested a shift parameter s/2~ —0.15. With this
shift, the code was run to 1000 iterations. The convergence
history in Fig. 14 shows a lot of oscillations in the residual.

107
0’
—
<
s’
=
n 10° .
- AVA'AV]
w0k 3
NW\/\I\
?10’7_ 1 1 1 !

400 600 800 1000

ITERATIONS

FIG. 14. ARC2D 127 x 32 viscous C-mesh, Mach 0.85, Re = 8E + 06,
Alpha = 2°, without shift, ; shift = —0.3,

This is because of a complex dominant eigenvalue, whose
presence was confirmed by Arnoldi's method. With the
shifted version, the residual at 300 iterations is smaller than
that of the original ARC2D at 000 iterations. Even though
this is an improvement of less than two orders of magnitude,
the shifted version saved some 700 iterations. Whereas the
coefficient of lift €, for the NACACQ012 airfoil oscillated
between 0.165 and 0.225 originally, it converged to three
decimal places with the improvement caused by shifting the
spectrum of the implicit operator.

VIL. SENSITIVITY OF THE SOLUTION W.R.T. SHIFT

The shift parameter is found to depend strongly on the
eigenvalue distribution of the operators. This was confirmed
by the fact that a different shift was required for each class
of problems. Moreover, for different values of “s,” the rates
of convergence were calculated and plotted. In the case of
the ARC2D, only a few values of s were tested each time.
This was done inorder to carry out the sensitivity test with
maximum economy. The results are shown in Table III.
Theoretically, optimal values of the shift for these cases, as
given by Eq. (14), were 0.2, —0.15, and — 0.2, respectively.
These values can be confirmed from the experimental data
of Table 111

VII. CONCLUSION

Shifting of the spectrum, presented here, is a simple bul
powerful idea. It stems from the usual power method [15]
of linear algebra. The amount of shift to be employed,
depends on the eigenspectrum of the problem in question.
This is where the entire difficulty lies, but Arnoldi’s method
is an economical solution of the problem. Since Arnoldi’s
method extracts the ends of the spectrum very efficiently
and accurately [9], it should be used to compute 4,,,, and
Amin. In the one-dimensional nozzle problem [16] with 100
grid points, Arnoldr’s method gave a good estimate of A_,,
and A,,, by using an additional 20 iterations of the code.
Similarly, in the ARC2D with a grid of 127 x 32, where the

TABLE III

Mach 0.4, inviscid
at 400 iterations

Mach 0.8, inviscid
at 600 iterations

Mach 0.4, viscous
at 1000 iterations

Shift Rate Shift Rate Shift Rate
0 0.9651 0 0.99569 0 0.987
—0.2 0.93505 —0.1 0.9945 —-02 0.981
—-03 0.9517 —0.15 0.9939 —03 0.992
—04 1.0 —0.2 1.0 — —

Does not converge Does not converge
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implicit operator is a matrix of order 16256, 4., and 4.,
can be estimated in about 50 extra iterations ol the code. In
terms of CPU time on the Cray XMP, it costs about 7 s.
This is minimal as compared to the amount of savings
produced. But the overall reduction in CPU time and the
number of iterations to convergence is noticeable. The total
gain in CPU time is better than 20 s for a calculation that
took 100 CPU s. Arnoldi’s method actually pays for itself
when used for shifting the spectrum of any linear or
nonlinear transformation.

In using Arnoldi’s method for computing spectrums of
nenlinear operators, the corresponding eigenvectors could
always be obtained at no extra cost. These eigenvectors
that belonged to a certain Krylov subspace formed an
orthogonal system under some assumptions. Arnoldi’s
method gave more information about the operators than
was utilized in this paper. A preconditioning of the ARC2D
equations by the above-mentioned orthogonal system is still
an open guestion.

ACKNOWLEDGMENTS

The authors are thankful to the referees for suggestions that have
improved this paper.

REFERENCES

1. Y. Saad, Linear Algebra Appl. 34, 269 (1980).

2. IMSL, International Mathematical & Statistical Library, Houston,
TX.

3. T. H. Pulliam, Efficient sotution methods for the Navier-Stokes equa-

tions, Lecture Notes for the von Karman Institute for Fluid Dynamics,
1986.

4. T. H. Pulliam, Implicit sclution methods in computatioral fluid
dynamics, “Applied Numerical Mathematics,” Trans, IMACS 2(6),
441 (1986).

5. T. H. Pulliam, Euler and Thin Layer Navier—Stokes Codes, ARC2D
and ARC3D, 1986.

6. A. Cheer, M. Saleem, T. H. Pulliam, and M. Hafez, “Analysis of the
Convergence History of Flows through Nozzles with Shocks, in 4744
(American Institute of Aeronautics and Astronautics), SIAM First
National Fluid Dynamics Congress, Cincinnati, Ohio, [988, 620
(unpublished ).

7. W.E. Arnoldi, Q. Appl. Math. 9, 17 {1951).

8. L. E. Eriksson and A. Rizzi, J. Compur. Phys. 57(1}, 263 (1985).

9. J. Cullum and R. A. Willoughby, Lanczos Algorithms for Large Sym-
metric Eigenvalue Computations, Vol I (Birkhauser, Boston, 1985).

10. T. H. Pulliam, ARC2D Computer Code at NASA Ames Research
Center, for Solving Thin Layer Navier-Stokes Equations, 1987
(unpublished ).

11. R. Beam and R. F. Warming, J. Compur. Phys. 22, 87 (1976).

12. D. 8. Chausse and T. H. Pulliam, A Diagonal Form of an Implicit
Approximate Factorization Algorithm with Application to a Two
Dimensional Inlet, AIAA (American Institute of Aeronautics and
Astronautics, 1981), 83.

13. T. H. Pulliam, ATAA 85-0438, 23rd Aerospace Sciences Meeting, Reno,
NV, 1985,

14, D. Shanks, J. Marh. Phys. 34, 1 (1955).

15. D. K. Faddeev and V. N, Faddeva, Computarional Methods of Linear
Algebra, translated by R, C. Wiliams (Freeman, San Francisco, 1963).

16. A. Cheer and M. Saleem, fnz. J. Numer, Methods Fluids 12, 443 (1990).

17. M. Saleem, Ph.I>. Dissertation, University of California, Davis, 1988
{unpublished).

18. E. K. Blum, Numerical Analysis and Computation. Theory & Practice
(Addison-Wesley, Reading, MA, 1972).

19. B. S. Baldwin and H. Lomax, AIAA Paper No. 78-257, 1978.

20. A. Jameson, Appl. Math. Comput. 13, 327 (1983).



